Is There a Role for PI3k Inhibitors in Breast Cancer? Maybe.

Over the past decades oncologists have learned that cancer is driven by circuits known as signal transduction pathways. Signal_transduction_pathways.svgThe first breakthroughs were in chronic myelogenous leukemia (CML) where a short circuit in the gene as c-Abl caused the overgrowth of malignant blasts. The development of Imatinib (Gleevec) a c-Abl inhibitor yielded brilliant responses and durable remissions with a pill a day.

The next breakthrough came with the epidermal growth factor pathway and the development of Gefitinib (Iressa) and shortly thereafter Erlotinib (Tarceva). Good responses in lung cancers, many durable were observed and the field of targeted therapy seemed to be upon us.

220px-PI3kinaseAmong the other signal pathways that captured the imagination of the pharmaceutical industry as a potential target was phospho-inositol-kinase (PI3K). Following experimental work by Lew Cantley, PhD, who first described this pathway in 1992, more than a dozen small molecules were developed to inhibit this cell signal system.

The PI3K pathway is important for cell survival and regulates metabolic activities like glucose uptake and protein synthesis. It is associated with insulin signaling and many bio-energetic phenomena. The earliest inhibitors functioned downstream at a protein known as mTOR, and two have been approved for breast, neuroendocrine and kidney cancers. Based on these early successes, PI3K, which functions upstream and seemed to have much broader appeal, became a favored target for developmental clinical trials.

The San Antonio Breast Cancer Symposium is one of the most important forums for breast cancer research. The December 2014 meeting featured a study that combined one of the most potent PI3K inhibitors, known as Pictilisib, with a standard anti-estrogen drug, Fulvestrant, in women with recurrent breast cancer. The FERGI Trial only included ER positive patients who had failed prior treatment with an aromatase inhibitor (Aromasin, Arimidex or Femara). The patients were randomized to receive the ER blocker Fulvestrant with or without Pictilisib.

With seventeen months of follow-up there was some improvement in time to progressive disease, but this was not large enough to achieve significance and the benefit remains unproven. A subset analysis did find that for patients who were both ER (+) and PR (+) a significant improvement did occur. The ER & PR (+) patients benefitted for 7.4 months on the combination while those on single agent Fulvestrant for only for 3.7 months.

The FERGI trial is more interesting for what it did not show. And that is that patients who carried the PI3K mutation, the target of Pictilisib, did not do better than those without mutation (known as wild type). To the dismay of those who tout the use of genomic biomarkers like PI3K mutation for patient drug selection, the stunning failure to identify responders at a genetic level should send a chill down the spine of every investor who has lavished money upon the current generation of genetic testing companies.

It should also raise concerns for the new federal programs that have designated hundreds of millions of dollars on the new “Personalized Cancer Therapy Initiatives” based entirely on genomic analyses. The contemporary concept of personalized cancer care is explicitly predicated upon the belief that genomic patient selection will improve response rates, reduce costs and limit exposure to toxic drugs in patients unlikely to respond.

This unanticipated failure is only the most recent reminder that genomic analyses can only suggest the likelihood of response and are not determinants of clinical outcome even in the most enriched and carefully selected individuals. It is evident from these findings that PI3K mutation alone doesn’t define the many bioenergetic pathways associated with the phenotype. This strongly supports phenotypic analyses like EVA-PCD as better predictors of response to agents of this type, as we have shown in preclinical and clinical analyses.

Cancer Medicine – A Humbling Experience

In his brilliant 1998 book, Consilience, Edward O. Wilson, notes: “The cost of scientific advance is the humbling recognition that reality was not constructed to be easily grasped by the human mind.”

This sententious point has remained a guiding principle in my thinking about human cancer. It is critically important for scientific investigators to be humble. We are explorers in a field more complex than any man-made system. We must be instructed by biology – as biological events will always find a way to outsmart our best efforts to explain them.

I was reminded of E.O. Wilson, when a colleague forwarded a recent publication from Molecular Cancer Therapy, “Molecular Profiling of Patient with Colorectal Cancer and Matched Targeted Therapy in Phase I Clinical Trials,” Dienstmann, R. et al MOL CANCER THER Sept 2012. The study conducted by the Molecular Therapeutics Research Unit at Vall d’Hebron Institute of Oncology in Barcelona, Spain, evaluated 254 patients for evidence of specific genetic aberrations. Their genomic analyses included, KRAS, BRAF, PIK3CA, PTEN, and pMET. Patients were then provided clinical therapy trials that matched the targeted agents (drugs with activity against the specific mutation) with their individual mutation profiles

In all, 68 patients received treatment constituting a total of 82 different molecularly targeted therapies. The clinical response rate for this population of patients who received molecularly selected therapy was 1.2%. No that isn’t a typo; it was really one point two percent.

While I applaud the scientific concept of this trial and must admit that I might have expected a somewhat higher response rate, I am not surprised by the result. In keeping with E. O. Wilson’s quote, human biology is not a puzzle designed to be solved by humans; it is instead the complex product of a billion years of evolution. Rather than demanding that cancer patients respond to those treatments we have selected for them based on genetic information, we should be instructed by the tumor’s behavior of each patient and use those insights to select amongst active drugs, whatever genetic elements they may have been originally designed to target. In my lectures, I describe this approach as the wisdom of whole cell experimental models.

I am continually humbled by the complexity of human tumor biology and delighted to have the insights that my patient’s cancer cells provide through the functional profile created by our EVA-PCD assay. Not only do I gain exciting scientific knowledge, but my patients have very good responses to the drugs we select. Not a bad day’s work.

Gee (G719X) Whiz: Novel Mutations and Response to Targeted Therapies

In a recent online forum a patient described her experience using Tarceva as a therapy for an EGFR mutation negative lung cancer. For those of you familiar with the literature you will know that Lynch and Paez both described the sensitizing mutations that allow patients with certain adenocarcinoma to respond beautifully to the small molecule inhibitors.  The majority of these mutations are found in Exon 19 and Exon 21, within the EGFR domain. Response rates for the EGFR-TKI (gefitinib and erlotinib) clearly favor mutation positive patients. Depending upon the study, mutation positive patients have response rates from 53 – 100 percent, generally around 70 percent, while mutation negative response patients have a response rate of 0 – 25 percent, generally about 10 percent.So why don’t all the mutation positive patients respond and conversely why do some mutation negative patients respond?

The story outlined in this online forum gives some insight. The individual in question carried a rare, and only recently recognized, Exon 18 mutation known as a G719X. This uncommon form of mutation had previously been unknown and few laboratories knew to test for it. Nonetheless, G719X positive patients respond to erlotinib and related agents. Indeed, there may be reason to believe that the more potent irreversible EGFR/HER2 dual inhibitor HKI-272, may be even more selective for this point mutation.

The excellent and durable response described by this individual, would not have been possible had the patient’s first physician followed the rules. That is, had her physician refused to give erlotinib to an (putatively) EGFR mutation negative patient she might well not be here to tell her story. More to the point, her good response (a clinical observation) led to the next level of investigation, namely the identification of this specific EGFR variant

The lessons from this experience are numerous. The first is that cancer biology is complex and, to paraphrase E.O. Wilson, was not put on earth for us to necessarily figure it out. The second, is that molecular biologists can only seek and identify that which they know about apriori.  To wit, if you don’t know about it (G719X) and you don’t have a test for it, and you don’t know to look for it, then it’s a virtual certainty that you aren’t going to find it.

The premise of our work at Rational Therapeutics is that the observation of a biological signal identifies a candidate for therapy whether we understand or recognize the target. Crizotinib was originally developed as a clinical therapy for patients who carried the CMET mutation. Serendipity led to the recognition that the responding subpopulation was actually carrying a heretofore-unrecognized ALK gene rearrangement. Sorafenib was originally evaluated for the treatment of BRAF mutation positive diseases. Yet it was the drug’s cross-reactivity with the VGEF tyrosine kinases that lead to its broad clinical applications. Each of these phenomena represents accidental successes. Were it not for the clinical observation of response in patients, the investigators conducting these trials would have been unlikely to make the discoveries that today provide such good clinical responses in others.

To put it quite simply, these patients and their disease entities educated the molecular biologists.

When we first identified lung cancer as a target for gefitinib, and began to administer the closely related erlotinib to lung cancer patients, neither Lynch nor Paez had identified the sensitizing EGFR mutations. That had absolutely no impact upon the excellent responses that we observed. It didn’t matter why it worked, but that it worked.  While the EGFR story has now been well-described, might we not use functional analytical platforms (functional profiling) to gain insights into the next, and the next generation of drugs and therapies that target pathways like MEK, ERK, SHH, FGFR, PI3K, etc., etc., etc. . . .

An Ounce of Prevention

Colorectal cancer is among the leading causes of cancer death in the United States. While most patients develop this disease over a period of decades, associated with an accumulation of genetic mutations (elegantly described by Burt Vogelstein, PhD at Johns Hopkins), a small percentage of patients have a genetic predisposition for this cancer. Among these are those people that carry the familial adenomatous polyp syndrome (FAPS) and those who carry mismatch repair mutations know as Lynch syndrome.

It is the latter group who are the subject of a report in the October issue of the English journal Lancet. In this study, known as the CAPP2 trial, patients with Lynch syndrome received either placebo or 600mg of aspirin per day (the equivalent of two tablets). The results reveal a statistically significant reduction of colon cancer that clearly favored the aspirin group.

To put this in perspective, this dramatic improvement in the highest risk population didn’t come about as the result of a new signal transduction inhibitor or a monoclonal antibody. Instead, it came from the simple administration of one of mankind’s earliest medicinal substances. I applaud these English investigators in conducting this study of 861 patients.

What is most laudatory is that the intervention, while highly effective, is so inexpensive. In an era of proprietary medications and the promotion of expensive new interventions, it is indeed refreshing to read the results of a well-conducted study using an intervention available to all.

Data generated more than two decades ago established the benefit of non-steroidal anti-inflammatory drugs like aspirin for the prevention of colorectal cancer. It is gratifying that this simple intervention has additional scientific support both for those with high-risk predisposition, as well as other patients at risk for this relatively common, yet potentially lethal, malignancy.

Has the Era of Genomics as we Know it Come and Gone?

I have often described my personal misgivings surrounding the application of gene profiles for the prediction of response to therapeutics. My initial concerns regarded the oversimplification of biological processes and the attempt of analyte-driven investigators to ascribe linear pathways to non-linear events.

The complexities of human tumor biology, however vast, took a turn toward the incomprehensible with the publication of a lead article in Nature by the group from Harvard under Dr. Pier Paulo Pandolfi. (Poliseno, L., et al. 2010. A coding-independent function of gene and pseudogene mRNAs regulates tumor biology. Nature. 2010 Jun 24; 465(7301):1016-7.) I sat in as Dr. Pandolfi reviewed his work during the Pezcoler Award lecture, held Monday, April 4, 2011, in Orlando at the AACR meeting.

What Dr. Pandolfi’s group found was that gene regulation is under the control of messenger RNA (mRNA) that are made both by coding regions and non-coding regions of the DNA. By competing for small interfering RNAs (siRNA) the gene and pseudogene mRNAs regulate one another. That is to say that RNA speaks to RNA and determines what genes will be expressed.

To put this in context, Dr. Pandolfi’s findings suggest that the 2 percent of the human genome that codes for known proteins (that is, the part that everyone currently studies) represents only 1/20 of the whole story. Indeed, one of the most important cancer related genes (known as PTEN, is under the regulation of 250 separate, unrelated genes. Thus, PTEN, KRAS and, for all we know, all genes, are under the direct regulation and control of genetic elements that no one has ever studied!

This observation represents one more nail in the coffin of those unidimensional thinkers who have attempted to draw straight lines from genes to functions. This further suggests that attempts on the part of gene profilers to characterize patients likelihoods of response based on gene mutations are not only misguided but, may actually be dishonest.

The need for phenotype analyses like the EVA-PCD performed at Rational Therapeutics has never been greater. As the systems biologists point out complexity is the hallmark of biological existence. Attempts to oversimplify phenomena that cannot be simplified, have, and will continue to, lead us in the wrong direction.

Poster from Rational Therapeutics Session at 2011 AACR Meeting

As I mentioned in a previous post, on April 3, 2011, I traveled to Florida to present our most recent findings on novel compounds that target two parallel circuits in cancer cells at the American Association of Cancer Research Meeting.

Following are shots of the poster that was presented. I encourage you to leave any comments and/or questions here, as I would be pleased to respond to your inquiries.

Rational Therapeutics Cancer Reseach Poster (AACR) Panel 1

Rational Therapeutics Cancer Reseach Poster (AACR) Panel 2

Rational Therapeutics Cancer Reseach Poster (AACR) Panel 3

Rational Therapeutics Cancer Reseach Poster (AACR) Panel 4

Targeted Therapies — The Next Chapter

Within this blog, we have intermittently reviewed the concept of targeted therapies. To reiterate, these are classes of drugs that target specific pathways considered tumorigenic. Among the pathways initially targeted were the epidermal growth factor receptor and the closely related HER2. Shortly after the introduction of EGFr and HER2 directed therapies came the development of drugs that target another critical pathway, mTOR.

Hundreds of compounds are now under development intended to more accurately hone in on the pathways of interest in patients’ tumors. Regrettably, the medical community continues to apply old clinical trial methods to this newest era of drugs. While the selective application of drugs like: Tarceva for EGFR mutants, Herceptin for HER2 over-expressers, and Crizotinib for EML4-ALK mutants, are much more effective in patients with these gene expressions, these are a select few examples of linear thinking that bore fruit.

That is, this gene is associated with this disease state and can be treated with this drug.

Many, if not most cancers will prove to be demonstrably more complicated. Genomic trials can only succeed if we first know the gene of interest and second know that its (over) expression alone is pathogenetic for the disease entity. Even meeting these conditions is likely to result in comparatively brief partial responses due to the crosstalk, redundancy and complexity of human tumor signaling pathways — the “targets” of these new drugs.

To address these complexities, functional analytic platforms that examine outcomes, not targets, are needed. This bottom-up approach has now enabled my team to explore the activity of novel compounds. When investigators develop interesting “small molecules,” we examine the disease specificity, combinatorial potential and sequence dependence of these compounds in short-term cultures to provide meaningful insights that can then be addressed on genomic and proteomic platforms. This reduces the time required to take these new agents from bench to bedside. We cannot solve tomorrow’s questions using yesterday’s mindsets