The Angelina Jolie Effect

stock-photo-16854195-premiere-of-sony-pictures-salt-arrivalsAngelina Jolie’s willingness to bravely publish her saga, as she confronts the risk of a nefarious form of cancer, has focused international attention upon the phenomenon of genetic predisposition to cancer.

The term BRCA, coined by investigators from Berkeley and Europe, described an inherited predisposition to cancer. Years of research came to fruition in the early 90s when geneticist Mary-Claire King and her collaborators recognized that patients who lacked DNA repair capacity tended to accumulate chromosomal damage that ultimately lead to cancer.

The BRCA genes (1 and 2) are part of the genomic fidelity system. Just like it sounds, these DNA repair enzymes maintain the “fidelity” or trueness of your makeup. Everyday our bodies are exposed to mutations. Radon in the atmosphere, carcinogens, even our dietary intake regularly injures our chromosomes. In response, we marshal defenses that recognize, remove and repair the damaged elements before they can be transmitted to the next generation of cells. When these BRCA genes are absent or silenced, the normal wear and tear goes unrepaired. Over a lifetime, this leads to a triggering mutation and cancer.

BRCA genes are like the Zamboni machines that clean up the ice in-between periods in a hockey game. Imagine what a Stanley cup game would be like if the ice was so dug up that the players took a tumble every time they skated toward the goal.

Ms. Jolie’s chromosomes are like the ice, but her Zamboni machine isn’t working.

So why would someone like Angelina Jolie get cancer? The reason why patients with the BRCA1 or 2 mutation get breast and ovarian cancer over other types of cancer remains somewhat of a mystery. But the reason that they get cancer at all is quiet clear. They accumulate damage they can’t repair.

That being the case, what happens when we introduce DNA damage intentionally? The answer is: patients with BRCA1 and BRCA2 respond to chemotherapy often quite dramatically. It is the very fact that cells cannot repair damage, which makes them hypersensitive to DNA damaging drugs like alkylators (cytoxan), platins (cisplatin and carboplatin) and ionizing radiation (x-rays). Indeed, tumors that carry DNA repair deficiencies are among the easiest to treat with conventional cytotoxics. Thus, the very reason that these patients develop cancers is the Achilles heel that makes their tumors drug sensitive.
Interestingly, BRCA1 and BRCA2 positive patients don’t only get breast and ovarian cancer; they can also develop melanoma, lymphoma and other tumors.

The importance of the BRCA discovery has been important on many levels. First and foremost it has enabled us to develop screening techniques to identify the at-risk populations that allows them to undertake preventative measures. Second, it has granted an insight into carcinogenesis and the concept of genomic fidelity. Third, it has provided new therapeutic options for these patients and all patients with cancers that have “BRCA-ness.”

Finally, it has opened up a field of investigation that connects cancer with other long-recognized disease states like the pediatric condition Fanconi’s anemia. It only reminds us again that cancer is but one part of a continuum of human diseases.

Personalized Cancer Care: N-of-1

The New York Yankees catcher Yogi Berra famous quote, “Déjà vu all over again,” reminds me of the growing focus on the concept of “N- of-1.” For those of you unfamiliar with the catchphrase, it refers to a clinical trial of one subject.

In clinical research, studies are deemed reportable when they achieve statistical significance. The so-called power analysis is the purview of the biostatistician who examines the desired outcome and explores the number of patients (subjects) required to achieve significance. The term “N” is this number. The most famous clinical trials are those large, cooperative group studies that, when successful, are considered practice-changing. That is, a new paradigm for a disease is described. To achieve this level of significance it is generally necessary to accrue hundreds, even thousands of patients. This is the “N” that satisfies the power analysis and fulfills the investigators expectations.

So what about an N-of-1? This disrupts every tenet of cancer research, upends every power analysis, and completely rewrites the book of developmental therapeutics. Every patient is his or her own control. Their good outcome reflects the success or failure of “the trial.” There is no power analysis. It is an “N” of 1.

This “breakthrough” concept however, has been the underpinning of the work of investigators like Drs. Larry Weisenthal, Andrew Bosanquet, Ian Cree, myself and all the other dedicated researchers who pioneered the concept of advancing cancer outcomes one patient at a time. These intrepid scientists described the use of each patient’s tissue to guide therapy selection. They wrote papers, conducted trials and reported their successful results in the peer-reviewed literature. These results I might add have provided statistically significant improvements in clinical responses, times to progression, even survival. By incorporating the contribution of the cellular milieu into clinical response prediction, these functional platforms have consistently outperformed their genomic counterparts in therapy selection So why, one might ask, have the efforts of these dedicated investigators fallen on deaf ears?

I think that the explanation lies in the fact that we live in a technocracy. In this environment, science has replaced religion and medical doctors have abdicated control of clinical development to the basic scientists and basic scientists love genomics. It is no longer enough to have good results; you have to get the results the right way. And so, meaningful advances in therapeutics based on functional platforms have been passed over in favor of marginal advances based on genomic platforms.

There is nothing new about N-of-1. It has been the subject of these investigators compelling observations for more than two decades. Though functional platforms (such as our EVA-PCD®) are not perfect, they provide a 2.04 (1.62 to 2.57, P < 0.001) fold improvement in clinical response for virtually all forms of cancer – as we will be reporting (Apfel C, et al Proc ASCO, 2013).

It seems that in the field of cancer therapeutics “perfect is the enemy of good.” By this reasoning, good tests should not be used until perfect tests are available. Unfortunately, for the thousands of Americans who confront cancer each day there are no perfect tests. Perhaps we should be more willing to use good ones while we await the arrival of perfect ones. After all, it was Yogi Berra who said, “If the world was perfect, it wouldn’t be.”