With an EVA-PCD Assay, It Can Be That Simple

Shortly after I left the university and joined a medical oncology group, one of the junior members of the practice asked if I would cover for him during his summer vacation. Among the patients he signed over to me was a gentleman in his 60s with what he described as “end-stage” chronic lymphocytic leukemia (CLL). As the patient had already received the standard therapies, second line regimens and experimental drugs available at the time, the physician had run out of options. My charge was to keep him comfortable. I asked if it would be all right for me to study his cells in my lab and the doctor agreed.

CLL 130611.06I met the patient the next day. He was a very pleasant tall, slender black man lying in bed. He had lost a great deal of weight making the already enlarged lymph nodes in his neck appear that much more prominent. As I was engaged in the study of CLL as my principal tumor model, I asked if I might examine his circulating CLL cells as part of our IRB-approved protocol. He graciously obliged and I obtained a few ccs of blood. We were deeply ensconced in tumor biology analyses and his cells were used to explore membrane potentials, DNA degradation and glutathione metabolism as correlates with drug response profiles by EVA-PCD analysis. A large number of those studies have since been published.

What struck me about the patient’s EVA-PCD profile was the exquisite sensitivity to corticosteroids. Corticosteroids in the form of prednisone, Medrol, Solu-Medrol and Decadron are the mainstays of therapy for lymphoid malignancies like CLL. Everyone receives them. Indeed this patient had received them repeatedly including his first line chlorambucil plus prednisone, his second-line CHOP and his third line ESHAP. It was only after he had failed all of these increasingly intensive regimens that he finally moved on to an experimental agent, homoharringtonine, a drug that finally received FDA approval in 2012, after almost 40 years of clinical development. Unfortunately for him homoharringtonine did not work and it seemed we were well beyond conventional therapies, or were we?

I pondered the corticosteroid sensitivity finding and decided to start the patient on oral prednisone. It would be another two weeks before his physician returned and there really weren’t many options. The patient responded overnight. The lymph nodes melted away. The spleen diminished. He began to eat and gained weight. Within a few days he felt well enough to go home. I discharged the patient and remember writing his prednisone prescription, 40 mg by mouth each morning.

A week later, my colleague returned from his retreat in the Adirondacks. He inquired about his patients and surmised that this gentleman, no longer in the hospital, had died. I explained that he had been discharged.

“Discharged . . . how?” he asked. I described the findings of our EVA-PCD study, the sensitivity to steroids and the patient’s miraculous clinical response to this, the simplest of all possible treatments. The physician then turned to me and said “Prednisone . . . hmmm . . . I could have done that.”

I am reminded of this story almost daily. It is emblematic of our work and of those who choose not to use it. Good outcomes in cancer do not occur by chance. They also do not require blockbuster new drugs or brilliant doctors. They require individualized attention to the needs of each patient.

A recurring theme, exemplified by this patient among others, is that cancer cells can only defend themselves in a limited number of ways. Once a selection pressure, in a Darwinian sense, is removed (e.g. corticosteroids were not used during the homoharringtonine treatments) the surviving cells, sensitive to steroids, re-emerge to be identified and captured in our laboratory platform.

It is remarkable how often heavily pretreated patients with ovarian cancer are found sensitive to Taxol after they had received it years earlier, but not since; or breast cancer patients who fail every new agent only to prove responsive to CMF, the earliest of all of the breast cancer drug combinations developed in the 1970s. Our job as oncologists is to find those chinks in armor of cancer cells and exploit them. The EVA-PCD platform, in the eyes of some, may not be groundbreaking . . . it just happens to work!


The Changing Landscape in Non-small Cell Lung Cancer (NSCLC)

In October 2012, we published a study of patients with metastatic NSCLC whose treatment was guided by EVA-PCD laboratory analysis. The trial selected drugs from FDA approved, compendium listed chemotherapies and every patient underwent a surgical biopsy under an IRB-approved protocol to provide tissue for analysis.

The EVA-PCD patients achieved an objective response rate of 64.5 percent (2-fold higher than national average, P < 0.0015) and median overall survival of 21.3 months (nearly 2-fold longer than the national average of 12.5 months).

Non-small cell lung cancer

Non-small cell lung cancer

The concept of conducting biopsies in patients with metastatic NSCLC was not only novel in 2004, it was downright heretical. Physicians argued forcefully that surgical procedures should not be undertaken in metastatic disease fearing risks and morbidity. Other physicians were convinced that drug selection could not possibly improve outcomes over those achieved with well-established NCCN guidelines. One oncologist went so far as to demand a formal inquiry. When the hospital was forced to convene an investigation, it was the co-investigators on the IRB approved protocol and the successfully treated patients who ultimately rebuffed this physician’s attempt to stifle our work.

With the publication of our statistically superior results and many of our patients surviving more than 5 years, we felt vindicated but remain a bit battle scarred.

I was amused when one of my study co-authors (RS) recently forwarded a paper authored at the University of California at Davis about surgical biopsies and tumor molecular profiling published by The Journal of Thoracic and Cardiovascular Surgery. This single institution study of twenty-five patients with metastatic NSCLC reported their experience-taking patients with metastatic disease to surgical biopsy for the express purpose of selecting therapy. Sixty four percent were video assisted thoracic (VATS) wedge biopsies, 16 percent pleural biopsies, 8 percent mediastinoscopies, 12 percent supraclavicular biopsies and 8 percent rib/chest wall resections. Tissues were submitted to a commercial laboratory in Los Angeles for genomic profiling.

The authors enthusiastically described their success conducting surgical procedures to procure tissue for laboratory analysis. Gone was the anxiety surrounding the risk of surgical morbidity. Gone were the concerns regarding departure from “standard” treatment. In their place were compelling arguments that recapitulated the very points that we had articulated ten years earlier in our protocol study. While the platforms may differ, the intent, purpose and surgical techniques applied for tissue procurement were exactly the same.

What the Cooke study did not describe was the response rate for patients who received “directed therapy.” Instead they provide the percent of patients with “potentially targetable” findings (76 percent) and the percent that had a “change in strategy” (56 percent) as well as those that qualified for therapeutic trials (40 percent). Though, laudable, changing strategies and qualifying for studies does not equal clinical responsiveness. One need only examine the number of people who are “potential winners” at Black Jack or those who “change their strategies” (by changing tables/dealers for example) or, for that matter, those who qualify for “high roller status” to understand the limited practical utility of these characterizations.

Nonetheless, the publication of this study from UC Davis provides a landmark in personalized NSCLC care. It is no longer possible for oncologists to decry the use of surgical biopsies for the identification of active treatments.

As none of the patients in this study signed informed consents for biopsy, we can only conclude that the most august institutions in the US now view such procedures as appropriate for the greater good of their patients. Thus, we are witness to the establishment of a new paradigm in cancer medicine. Surgical biopsies in the service of better treatment are warranted, supported and recommended. Whatever platform, functional or genomic, patient-directed therapy is the new normal and the landscape of lung cancer management has changed for the better.

With Cancer, Don’t Ask the Experts

I was recently provided a video link to a December 2013 TEDx conference presentation entitled, “Big Data Meets Cancer” by Neil Hunt, product manager for Netflix. Mr. Hunt’s background has nothing to do with cancer or cancer research. His expertise is in technology, product development, leadership and strategy and has personally shepherded Netflix to its current market dominance. With his background and lack of expertise in cancer, he is an ideal person to examine cancer research from a fresh perspective.

The Long Tail of CancerMr. Hunt begins with a (admittedly) simplistic look at cancer research today. Because he is a data guy, naïve to all of the reasons why cancer cannot be cured, he can look anew at how it might be cured. Using a graphic, he defines cancer as “a long-tail disease” made up of outliers. He points out that most 20th century medical successes have been in the common diseases that fall close to the thick end of the curve. As one moves to the less common illnesses data becomes more scant. Echoing a new conceptual thinking, he points out that cancer is not a single disease but many, possibly thousands.  His concept is to accumulate all of the individual patient data to allow investigators to explore patterns and trends: a bottom up model of cancer biology. Many of his points bear consideration.

For those of you who have read these blogs, you know that I am an adherent to the concept of personalized cancer care. I have articulated repeatedly that cancer patients must be treated as individuals. Each tumor must be profiled using available platforms so that time and resources will not be wasted. We have used the same term “N-of-1” (a clinical trial for one patient) that Mr. Hunt uses in his discussion. He provides two anecdotes regarding patients who benefitted dramatically from unexpected treatment choices. His rallying cry is that contemporary clinical trials are failing. Again, this is an issue that I have addressed many times. He then describes broad-brush clinical protocols as the “tyranny of the average.”

The remainder of the discussion focuses upon possible solutions. Among the obvious hurdles:
1.    Cancer centers are hesitant to share data.
2.    The publication process is slow.
3.    Few are willing to publish negative trials.

To counter these challenges, he points out that small organizations are more incentivized to share and that successes in long-tail diseases can resurrect failed drugs, thereby repaying the costs. Several points were particularly resonant as he pointed out that early adopters face outsized resistance but their perseverance against adversity ultimately evolves the field. He sees this as a win-win-win scenario with patients receiving better care, physicians witnessing better outcomes, and pharmaceutical companies gaining more rapid approval of drugs.

As I watched, it occurred to me that Mr. Hunt was articulating many points that we have raised for over the last decade. As an outsider, he can see, only too clearly, the shortcomings of current methods. His clear perceptions reflect the luxury of distance from the field he is describing. Mr. Hunt’s grasp of cancer research is direct and open-minded. Many problems need fresh eyes. Indeed as we confront problems as complex as cancer it may be best not to ask the experts.

Truly Personalized Cancer Care

In the mid 1980s, it became apparent to me that cancer did not result from uncontrolled cell proliferation, but instead from the lack of cell death. Yet, cancer research labored for almost a century under the erroneous belief that cancer represented dysregulation of cell proliferation. Today, we confront another falsehood: the complexities and redundancies of human tumor biology can be easily characterized based on genomic analyses.

The process of carcinogenesis reflects the accumulation of cellular changes that provide a selective survival advantage to transformed cells.  However, the intricate circuitry that provide these survival advantages, reflect harmonic osolations between DNA, RNA and protein. Put simply, Genotype does not equal Phenotype. It is the phenotype that determines biological behavior and clinical response in cancer. Thus, it is overly simplistic to imagine that a DNA profile by itself can provide more than a fraction of the information required to make individual patient treatment decisions.

Colon cancer

Colon cancer

When therapies are based on genomic analysis, only a portion of the patient’s profile is taken into consideration. These analyses disregard the environmental, epigenetic and proteomic factors that make each of us individuals. Though useful prognostically and applicable in select circumstances where a unique genetic perturbation leads to a clinical response (c-ABL and Imatinib response in CML), genomic analyses provide only a veneer of information.

The Rational Therapeutics Ex Vivo Analysis – Programmed Cell Death™ (EVA-PCD) assay focuses upon the complexity of human tumors by measuring cell death, the end result of all cellular mechanisms of response and resistance acting in concert. By incorporating cell-cell, vascular, stromal and inflammatory elements into the tumor response assessment, the EVA-PCD platform provides a robust surrogate for human tumor response. While much of modern cancer research pursues the question of “Why” cancer arises, the clinical oncologist must confront the more practical question of “How” the best outcome can be achieved.

Assay-directed therapy is truly personalized cancer care providing treatments unique to the individual.


Reblogged from February 2010.