Practicing Clinical Oncologists to the Rescue

Cancer patients and their physicians can find themselves at the wrong end of many scientific discoveries. For example, the drug capecitabine, sold commercially as Xeloda, was originally marketed at a daily dose of 2500 mg/m2 given for two weeks.

This schedule developed by the pharmaceutical investigators, is known as the maximum tolerated dose (MTD) and it performed well against other regimens for breast and colon cancer. With an FDA approval in hand, oncologists began administering the drug on the recommended schedule.

MTD2It did not take long before physicians and their patients realized that 2500 mg/m2/day was more than many patients could tolerate. Hand-foot Syndrome (an inflammation of the skin of palms and soles), mucositis (oral ulcers) myelosuppression (lowered blood counts) and diarrhea were all observed. Immediately clinical physicians began to dose de-escalate. Soon these astute practitioners established more appropriate dose schedules and the drug found its rightful place as a useful therapeutic in many diseases.

What was interesting was that activity continued to be observed. It appeared that the high dose schedule was simply toxic and that lower doses worked fine, with fewer side effects.

Modern targeted agents have been introduced over recent years with dose schedules reminiscent of capecitabine. The drug sunitinib, approved for the treatment of renal cell carcinoma, is given at 50 mg daily for four weeks in a row, followed by a two week rest. Despite good activity, toxicities like mucositis and skin rash often set in by the third week. What remained unclear was whether these schedules were warranted. A recent report in the Annals of Oncology examined this very question. In a retrospective analysis of patients with kidney cancer the physicians found that lowering the dose of sunitinib preserved activity but reduced toxicity.

As a practitioner, I have long reduced my patient’s schedule of sunitinib to two weeks on, one week off or even 11 days on, 10 days off. In one patient that I treated for a gastrointestinal stromal tumor (GIST), I achieved a durable complete remission with just 25 mg/day, given seven days each month, a remission that persists to this day, seven years on.

We are in a new world of targeted therapy, one in which very few people understand the kinetics, pharmacodynamics and response profiles of patients for novel drugs. In our laboratory, favorable dose response curves often suggest that many agents could be administered at lower doses. More interestingly, some patients who do not carry the “targets” for these drugs nonetheless respond. This has broad implications for multi-targeted inhibitors like sunitinib that can influence multiple targets simultaneously.

As so often happens, it is the nimble clinical physicians with their feet on the ground, confronting the very real needs of their patients who can outmaneuver and outthink their academic colleagues. The trend toward consolidation in medicine and the absorption of clinical practices into hospital groups all using standardized algorithms has the risk of stifling the very independence and creativity of practicing oncologists that has proven both effective and cost-effective for our patients and our medical system at large.

The Emperor of All Maladies’ New Clothes

Ken Burn’s series “The Emperor of All Maladies” from Siddhartha Mukherjee’s book of the same title ppbs logorovides an interesting and informative historical perspective on mankind’s efforts to confront cancer as a disease.

Beginning with ancient references to human malignancy, the series goes on to explore radical surgery and the earliest use of radiation but really gains traction in the mid-20th century with the discovery of the first chemotherapy drugs. While the nitrogen mustard derivatives were being studied under a veil of military secrecy, Dr. Sidney Farber in Boston explored the B-vitamin analogue, aminopterin, for the treatment of childhood leukemia. (You can read more about this in my book Outliving Cancer.)

Through the ensuing decades, seemingly stunning victories ultimately fell in crushing defeats, while the promise of single agents, then multi-drug combinations, followed by dose-intensive therapies, and finally bone marrow transplantation yielded few cures but delivered ever increasing toxicities. Clifton Leaf, a cancer survivor himself who created a stir with his controversial 2003 Fortune Magazine article entitled “Why We Are Losing the War on Cancer and How to Win It” described his own disappointment with the slow pace of progress.

Screen shot Emperor of All MaladiesThe last episode examined our growing understanding of human genomics and segued by interviews with Richard Klausner, former director of the National Cancer Institute; and Harold Varmus, the current NCI director; to Michael Bishop, Eric Lander and Francis Collins who luxuriated in the clinical potential of human genomics and the coming era of big science.

The final part was an interview with Steven Rosenberg, one of the earliest pioneers in immunotherapy and Carl June whose groundbreaking work with chimeric antigen receptor T-cells is among the most recent applications of this important field.

The take-home message would seem to be that despite the fits and starts we are now at the dawn of a new age of big science, big data and genomic breakthroughs. What was missing however was an examination of where we had gone wrong. It would seem that the third rail for this community is an honest assessment of how a small coterie of investigators who championed only certain ways of thinking over all others commandeered all the money, grants, publications, chairmanships and public attention, while patients were left to confront a disease from which survival has changed very little, at ever increasing costs and toxicities.

Another thing that came through was the very human side of cancer as a disease and the kindness and emotional support that family members and parents provided to those afflicted. I couldn’t help but feel that these individuals had been cheated: cheated of the lives of their family members, cheated of the resources that could have pursued other options and cheated of the well-being that these poisonous and dose-intensive regimens rained upon them in their last days.

As science has become the new religion and scientists the new gurus, one message that resonated was that many of these gurus were false prophets. They are too self-absorbed to question their own dogmatic belief systems in dose-intensity or multi-agent combinations, all of which fell painfully by the way side as the next therapeutic fad emerged. Will our current love affair with the gene prove to be little more than the most current example of self-congratulatory science conducted in the echo chamber of modern academia?

Victories against cancer will be won incrementally. Each patient must be addressed as an individual, unique in their biology and unique in their response probability. No gene profile, heat map, DNA sequence or transcriptomic profile has answered the questions that every patient asks; “What treatment is best for me?” Dr. Mukherjee himself used the analogy of the blind men and the elephant. Unfortunately, there was little discussion of how much that parable may apply to our current scientific paradigms.

It is time for patients to demand better and refuse to participate in cookie-cutter protocols.
Slide Detail-small
Physicians should become more familiar with the fundamentals of physiology and biochemistry to better understand the principles of cancer prevention at the level of diet and lifestyle.

Finally, while we wait with bated breath, for the arrival of glorious gene profiles widely touted as the future answer to all of cancer’s most vexing questions, patients should throw off the yoke of one-size-fits-all approaches and demand laboratory platforms, such as the EVA-PCD assay, that are available today to make better use of existing treatments.

Cancer Patients Need Answers Now!

I read a sad editorial in the Los Angeles Times written by Laurie Becklund, former LA Times journalist. It is, in essence, a self-written obituary as the patient describes her saga beginning almost 19 years earlier, when she detected a lump in her breast. With stage I breast cancer she underwent standard therapy and remained well for 13 years until recurrence was heralded by disease in bone, liver, lung and brain. Given a dire prognosis she became a self-made expert, conducting research, attending conferences, and joining on-line forums under the name “Won’t Die of Ignorance.” Despite her heroic effort Ms. Becklund succumbed to her illness on February 8. She was 66.

Ms. Becklunla-laurie-becklund-cropp-jpg-20150209d experienced the anguish that every patient feels when his or her own individual and highly personal needs simply aren’t being addressed. She opines that entities like the Susan G. Komen Fund, which has raised over $2.5 billion in the last 20 years, “channels only a fraction of those funds into research or assistance to help those who are already seriously sick.” She continues, “We need people, patients, doctors, scientists, politicians, industry and families to make a fresh start.” Her frustration is palpable as she states her outcome seemed to be based on the roll of the dice, like playing “Chutes and Ladders.”

The author’s plight is shared by the millions of patients who are confronting advanced cancers. They are not interested in “why” or “how” their cancers came to be. They can no longer benefit from early detection or cancer awareness campaigns. They need practical, actionable, clinical answers today.

Ms. Becklund’s commentary resonates with me and with everyone who has cOutliving Cancerancer or knows someone who does. As an oncology fellow at Georgetown, I found myself losing patient after patient to toxic and largely ineffective treatments, all despite my best efforts. I described this in my book “Outliving Cancer.” It was then that I decided that I would dedicate myself to meeting the individual needs of each of my patients and I have used a laboratory platform (EVA-PCD) to do so. I have encountered surprising resistance from clinicians and researchers who seem to prefer the glacial pace of incremental advancement found in population studies over individual solutions found in the study of each patient’s unique biology. Ms. Becklund correctly points out that every treatment must meet each individual’s need.

The role of the scientist is to answer a question (treatment A vs. treatment B) while that of the clinical physician must be to save a life. Every patient is an experiment in real time. It may well be that no two cancer patients are the same. Indeed, the complexity of carcinogenesis makes it very possible that every patient’s cancer is an entirely new disease, never before encountered. Although cancers may look alike, they may be biologically quite distinct. Meaningful advances in cancer will only occur when we learn to apply all available technologies to treat patients as the individuals that they are. Let us hope that Ms. Becklund’ s final essay does not fall upon deaf ears.

Rationed or Rational: The Future of Cancer Medicine

Disturbing news from Britain’s Health Service on Monday, January 12, described the National Health Services’ decision to “delist” 25 of the nation’s 84 currently available chemotherapy drugs from their formulary. Citing the rising cost of cancer therapy Professor Peter Clark, chair of the Cancer Drug Fund said that the CDF, originally established in 2011, had already exceeded its annual budget. From ₤280 million in 2014 the costs for 2015 are projected to rise to ₤340 million. In defense of the policy Dr. Clark said the delisted drugs “did not offer sufficient clinical benefit.”

avastinAn examination of the delisted drug should raise concern for medical oncologists. Among those delisted are Bevacizumab (Avastin) for colorectal cancer, Eribulin (Haloven) and Lapatinib (Tykerb) for breast cancer and Pemetrexed (Alimta) for advanced lung cancer. Additionalhalaven deletions include Bendamustine (Treanda) for some non-Hodgkin’s lymphoma, Bortezomib (Velcade) for relapsed mantle cell lymphoma and Waldenström’s macroglobulinemia. Bortezomib will also be limitedvelcade_MP_thumb in some cases of myeloma, while Cetuximab will be unavailable as second or third line treatment in colorectal cancer. For American oncologists these agents have become standards of care.

Many physicians in England are outraged. Mark Flannagan, executive chief of the Beating Bowel Cancer Fund described this as “bad news for bowel cancer patients” suggesting that 65% of patients with advanced colorectal cancers will confront the risk of an earlier death. Despite these draconian measures physicians may still have the opportunity to request delisted drugs under what is described as “exceptional cases.”

The breadth and scope of the drug restrictions are surprising. After all, Pemetrexed is one of the most widely used treatments for advanced lung cancer, Bevacizumab has become an established part of colorectal cancer management and Eribulin is a favored salvage regimen in recurrent breast. The withdrawal of Bortezomib, an active agent in mantle cell, Waldenström’s and myeloma, will not be suffered lightly by patients in need.

Are the problems confronting the UK an early harbinger of the same for the American medical system?

With aging populations in western societies and increasingly sophisticated medical technologies, the cost of medical care, particularly cancer care may soon become unmanageable. UK’s centralized medical care delivery through the National Health Service, a single payer system, was designed to save money. Despite its high-minded intentions, the NHS appears to be failing. While spending more money each year the dissatisfaction with medical delivery only grows. A nearly 12% increase in health care per person expenditures in England between 2009 and 2013 (₤1712 to ₤1912) was met with an 18% increase in patient complaints.

Among the problems are progressive layers of middle management that add cost without providing care.  Physicians find it more difficult to do their jobs while people inexpert in the delivery of medical care have been given decision-making power. As the English population has come to look upon health care as a right, some overuse medical services, even ER’s, for non-serious conditions. Reformers have suggested the solution may lie in charging fees for appointments or requiring an annual membership fee. In today’s political milieu however, few elected officials are likely to relish policies that end “free health care” in England.

What might solve this dilemma for medical oncology? An obvious solution is to apply resources where they are most likely to benefit patients, e.g. personalized care. While this seemed a pipe dream 20 years ago when we first introduced the concept, a growing chorus of scientists now embraces the idea. With their focus almost exclusively on genomics this new cadre of clinical investigators describe a future where each patient gets exactly the right treatment.

We applaud this thinking and fully agree. However, we must be prepared to use all platforms to achieve this worthy goal. To fill the current void phenotypic analyses offer substantive benefits. By capturing cancer biology at a functional level, these studies identify true “driver mutations,” and have the capacity to examine synergy and sequence-dependence, both beyond the scope of genomic analyses.

As human tumor primary culture analyses (such as EVA-PCD) have already been shown to double objective response rates and improve one-year survival, it is time for government officials and policymakers to re-examine the benefits of drug selection technologies that are available today.

Will the future of cancer medicine in the UK and the US be rationed under the duress of rising costs, or rational, through the application of available technologies capable of making intelligent cost- and life-saving decisions? That remains to be seen.

Stand Up to Cancer Research! The Downside to Clinical Trials.

As the practice of medicine has moved from a profession to an industrial undertaking, this most human of experiences has fallen prey to the dictates of the American business model. Patients are no longer the purchasers of medical care and services, but instead, the consumers of those goods and services that meet the needs of the purveyors. Whether this is a governmental entity, academic institution, or pharmaceutical company, individuals have become cogs in the wheel of the medical-industrial complex.

Cancer from dictionaryThis has become glaringly apparent in the field of cancer research. Cancer patients were once, for better or worse, in charge of their own destinies. They could choose their surgeon, oncologist, and institution, even to some degree the treatments that they wished to undergo. As the HMO model came into play, patients were increasingly told what doctor, what treatment, and what hospital. The capacity of individuals to make decisions was eliminated in favor of standardized care, cost guidelines and treatment protocols. While much of the academic community described this as progress with adherence to standardized protocols, these protocols have not provided superior outcomes in most settings. Instead, they offer hospital administrators the opportunity to anticipate costs, allocate resources, codify drug administration and regulate care delivery.

Recent experience has brought several disturbing examples to the fore. Working in the laboratory, we have been able to select candidates for new combinations, sometimes years before these regimens became broadly available. We then identify centers with access to these drugs under protocol. Many of the drugs have well-established safety records from prior phase 1 and 2 clinical trials, but have not achieved full FDA approval. When several of our patients with lung cancer revealed sensitivity to a regimen that we had identified years earlier (Kollin, C et al Abs 2170, Proc AACR, 2005) we immediately explored sites offering this combination of an oral agent with an IV antibody. The closest we could find was in Colorado. The injection, a widely established monoclonal antibody, FDA approved for gastrointestinal cancer, was not yet approved for lung cancer while the pill had been administered safely in hundreds of patients. Indeed, the combination had also been safely administered to dozens of patients by the time we inquired. Nonetheless, to participate in this potentially life-saving treatment my patients were forced to commute from LA to Colorado every other week.

It would have been quite easy, once the patients were formally accrued, for them to return to California and receive the same drugs under our care. After all, we were the ones who identified them as candidates in the first place and we were very familiar with the trial. Despite this, the rigidity of the protocol forced these lung cancer patients to become frequent fliers. The good news was that the treatments worked.

More recently a patient, who had failed experimental therapy for advanced uterine carcinoma at a large academic center in Texas, returned to LA five years ago to seek my assistance. A lymph node biopsy at the time revealed exquisite sensitivity to a drug combination developed and published by our group and she achieved a prompt complete remission. She has since relapsed and required additional chemotherapy. My concern for her long-term bone marrow tolerance, with repeated exposure to cytotoxic drugs, led me to seek alternatives. Her EVA-PCD functional profile had revealed excellent activity for PARP inhibitors. Here, I thought, would be the solution to her problem. After all, the PARP inhibitors had been in development for years. Several had revealed compelling activity in clinical trials and they are well tolerated. Despite this, no PARP inhibitor has been FDA approved.

When we pursued opportunities to accrue the patient to one of the PARP inhibitor trials, however, she did not qualify. Having received low dose Carboplatin several months earlier she ran afoul of an exclusion criterion in the protocol that dictated no platinum exposure for six months. “Six months?” I exclaimed. Few cancer patients can wait six months to start treatment and virtually no cancer patients can wait six months once they have relapsed. I was flabbergasted.

What exactly were the protocol designers thinking when they demanded a six-month wash out, fully four, five or six times longer than any protocol I’d ever encountered?  The absurdity of this demand virtually eliminated patients-in-need from consideration. As I considered the dilemma it became increasingly clear. When one examines the thinking behind clinical protocols it becomes evident that they are not designed to help patients or cure cancer. Instead, they are created to answer specific questions. In so doing they further the careers of investigators, expand medical center market share, standardize treatments and simplify the activities of clinical research organizations. Patient outcomes, well-being and convenience are far down the ladder of expectations.

As I pondered the inconvenience, hardship and lost opportunities associated with clinical trial participation for many patients around the United States, I began to wonder whether patients should throw off the yoke of this oppressive system. After all, it is not the academic centers that own the process, it is the patients. It is those brave individuals willing to participate in these studies. It is the patients whose tax dollars support these institutions. It is the patients who purchase either directly or indirectly the drugs they receive and it is the patients that are necessary for the process to succeed.

Patients should demand more user-friendly, convenient, patient-centric therapy programs. Perhaps patients should simply refuse to participate. A ground swell of patient advocacy could re-orient the discussion away from the convenience and ease of the treating physicians and toward the good outcome and ease of the treated patient. While we applaud the investigators for their brilliance and prowess, we forget that no clinical investigator would receive accolades were it not for the hundreds or thousands of patients who martyr themselves at the altar of clinical research. Patients, not their doctors, are the heroes.  Perhaps it is time for cancer patients to stand up to cancer research.

Scientifically-based Functional Profile Under Fire

Winston Churchill once said, “Democracy is the worst form of government, except for all the others that have been tried.” I am reminded of this quote by a “conversation” that recently took place on a cancer patient forum.

A patient wrote that they had requested that tissue be submitted for sensitivity analysis and their physician responded by describing this work as a scam. A scam is defined by the American Heritage Dictionary as slang for a “fraudulent business scheme.”

Continuing Churchill’s thread, we might respond, “that laboratory directed therapies are the worst form of cancer therapy, except for all the others that have been tried.”

Using functional profiling we measure the effect of drugs, radiation, growth factor withdrawal and signal transduction inhibition upon human tumors. Using our extensive database we compare the findings with the results of similar patients – by diagnosis and treatment status – to determine the most active and least toxic drug or combination for each patient.

The test isn’t perfect. Some patient’s cancer cells (about 5 – 7 percent of the time), do not survive the transport and processing, so no assay can be performed at all. Some patients are resistant to all available drugs and combinations. And finally, based on the established performance characteristics of the test, we can only double or in some circumstances triple, the likelihood of a clinical response.  This is all well documented in the peer-reviewed literature.

Despite this, it appears that in the eyes of some beholders these strikingly good results constitute a “scam.” So let us, in the spirit of fairness, and academic discourse examine their results.

First, it must be remembered that today in 2012 only a minority of cancer patients actually show objective response to available cancer therapies. Five-year survivals, the benchmark of success for advanced disease in oncology (those whose disease has spread beyond the primary site), have not changed in more than five decades.

The highly lauded clinical trial process, according to a study from the University of Florida, only provides a better outcome for a new drug over an old one, once for every seven clinical trials conducted

More disturbing, only one out of 14 clinical trials provide a survival advantage of 50 percent or greater for the successful treatment group.

According to a study from Tuft’s University, it takes 11 years and more than $1,000,000,000 dollars for a new drug to receive FDA approval.

And in a study published in the New England Journal of Medicine only 8 percent of drugs that complete Phase I (safe for human use) ever see the light of day for clinical therapy. This is the legacy of NCCN-guided, University-approved, ASCO-authorized clinical therapeutics programs to date.

As a practicing medical oncologist I am only too familiar with the failings of our modern clinical trial system. Having witnessed the good outcomes of our own patients on assay-directed protocols whose benefits derive from the intelligent use of objective laboratory data for the selection of chemotherapy drugs, I for one will NEVER return to business-as-usual oncology, regardless of what moniker the naysayers might choose to attach to this approach.

Looking Beyond Translation

An article in the May 3, 2012, New England Journal of Medicine, (NEJM) from the Mount Sinai School of Medicine and Mayo Clinic, examined the concept of translational research and its largely unfulfilled mission.  (Gelijns AC, Gabriel SC. Looking Beyond Translation – Integrating Clinical Research with Medical Practice. NEJM 2012; 366:1659–1661).  These investigators reviewed many of the precepts of clinical research and described mechanisms by which outcomes could be improved. Among the points they raised is the need to integrate clinical research with clinical practice to create “patient-centered, science-driven healthcare.”

Despite their academic credentials, Drs. Gelijns and Gabriel recognized that academic medical settings are not always conducive to conducting clinical research. They also describe the lack of incentives for clinical physicians to undertake research studies.  They go on to examine the need to refocus medical education onto a science of healthcare delivery. Finally, they decry the performance metrics by which clinical physicians are gauged (tests performed and numbers of patients seen) and contrast that with the equally unsatisfactory metrics for academicians (grants received and papers published). We couldn’t agree more.

While many of the points raised are worthwhile, these authors fail to grasp the fundamental problem at hand. Falling back on the age-old adage that pediatric malignancies have been cured through the clinical trial process, they criticize the adult oncology physicians for their lack of accrual. Their focus on participation in clinical trials as the highest accomplishment to which a medical oncologist might aspire is misguided and misleading. Grinding patients through ill-conceived clinical trials is no way to cure cancer. What are needed are intelligent solutions to complex problems. Complexity by its nature precludes the use of linear reasoning in the solution of problems. So complex is the cancer problem that investigators long since abdicated insights for statistical significance hoping that by throwing enough patients onto protocols, discernible patterns will emerge.

Childhood cancers have not been cured by protocols. They have been cured because they are curable. The average pediatric malignancy manifests a small number of mutational changes. Founder clones identified within these tumors can be eradicated even with the blunt instrument of contemporary chemotherapy. It is not an accident that childhood leukemia is curable, but instead a manifestation of the cells of origin.  Childhood ALL, the most common pediatric malignancy is a prime example. Hematopoietic elements by nature are good at dying. Chemotherapy just helps them along.

As we move from pediatric oncology to adult oncology however, we encounter a horse of a different color. There are the common adult tumors like colon and lung that have accumulated a myriad of perturbations over a lifetime of exposures and genetic errors. The pathway back to normality is fraught with hazards and the founder clones are often numerous and diverse.

To meaningfully advance cancer therapeutics we need wholly new conceptual frameworks that connect complex systems to available solutions. Analytic platforms that can reproduce human tumor biology in the laboratory will provide clinicians the targets for treatment, the results they seek and the incentive to participate in clinical trials.