Beyond Our Borders

I recently returned from Brazil where I participated in a cancer symposium. During my visit I encountered many highly skilled physicians with expertise in breast, thoracic, gastrointestinal and orthopedic oncology. The degree of collegiality and enthusiasm was palpable. The most exciting aspect of my visit was the warm reception and extremely high level of interest in the clinical application of our laboratory platform. It was a refreshing reminder that the parochial thinking of the American oncology community is not the norm throughout the world.

Upon my return, I had the pleasure of meeting a charming 61-year-old woman from New Delhi, India. In review of her chart I recognized her name as a patient for whom we had conducted a study in February of 2012. Her husband, an accomplished businessman, had learned of our laboratory and worked diligently to obtain, process and transport a portion of his wife’s tumor from the surgical suite to our lab. Despite multiply recurrent disease and numerous prior treatments, this patient’s ovarian cancer cells revealed exquisite sensitivity to a drug combination in the laboratory. Her physicians at the Apollo Hospital of New Delhi delivered the treatment exactly as outlined by our lab, and here sitting across from me was the patient in complete remission six months later. The family had traveled from India to meet me and express their thanks.

Each of these experiences speaks volumes for the globalization of cancer care. Cancer patients, whether from Brazil, India or China are more alike than different. Each confronts a seemingly insurmountable adversary. Each in their own way seeks out the best information and advice. And each can be best managed with those treatments found uniquely effective for their tumor. Perhaps once we have conquered cancer in India and Brazil, the EVA-PCD® assay will be ultimately accepted in the United States of America.

Platinum Resistance is in the Eye of the Beholder

I was recently apprised of an online conversation surrounding the treatment of platinum refractory and platinum resistant ovarian cancer. To clarify our terminology, platinum refractory disease refers to cancer that progresses during platinum therapy. This would be considered the most platinum resistant of the ovarian patients. The term “platinum resistant” developed over the last two decades, by Markman and others, is used to describe patients who initially respond to platinum-based chemotherapy and then relapse within six months of treatment.

While platinum refractory seems intuitively obvious, it has been suggested that platinum resistance is somewhat more arbitrary.  That is, what if one relapses one month versus five months, or seven months after treatment. In fact, studies conducted by investigators at Memorial Sloane-Kettering under Dr. David Spriggs, suggest that platinum resistance is a continuum extending from six months continuing out to 24 months and beyond. The longer the “platinum-free interval” the better the chance of response to combinations like carboplatin plus Taxol. Within the scope of this discussion I am in general agreement. However, as I describe below, this is, by far, not the whole story.

I am composing this particular blog in response to a comment that I encountered in a recent chat room discussion. The individual took an extremely strong stance stipulating that no medical oncologist should re-challenge a patient with a platinum-based regimen if they fall within the category of platinum refractory or platinum resistant. This statement is absolutely, positively WRONG.

Platinum resistance is mediated by DNA repair enzymes. These enzymes recognize and respond to platinum adducts and excise the DNA residues, replacing them with the appropriate base pairs. While this confers resistance to single agent platins, a degree of resistance which is largely is unaffected by the addition of taxanes, platinum resistance actually opens up an Achilles heel for treatment of these patients. Drugs like the antimetabolites (Gemcitabine, 5-FU), as well as the topoisomerase inhibitors become collaterally more active in those tumors with the most active DNA repair capacities. This is the reason why we have consistently observed responses in both platinum resistant and platinum refractory patients utilizing the combination of cisplatin and gemcitabine, as we reported in the original paper describing this combination in 2003 (Nagourney, R et al, Gyn Onc, 2003). Our response rate of 50 percent in heavily pre-treated and platinum resistant patients was confirmed by investigators in Ohio who reported similarly good results in patients with p-glycoprotein positive/platinum resistant disease (Rose, P, Gyn Onc 2003).  To formally test this hypothesis we conducted a national clinical trial with the GOG, which treated platinum resistant and platinum refractory patients with the combination of cisplatin plus gemcitabine. This trial provided the longest-time-to-progression for this population (six months) in the history of the GOG (Brewer et al, Gyn Onc 2006). These observations were subsequently reported in our textbook (Deoxynucleoside Analogs in Cancer Therapy, GPeters [ed] Humana Press 2006).

Similar results have been reported for Folfox in recurrent ovarian patients by Greek investigators (Pectasides, D et al, Gyn Onc 2004). To examine this phenomenon, one of the great investigators of antimetabolite chemistry, William Plunkett, conducted an instructive series of experiments in which they showed that platinum resistant ovarian cell lines expressed high levels of the DNA repair enzyme ERCC1. When these investigators blocked the ERCC1 expression with siRNA, the cell lines became resistant to the cisplatin plus gemcitabine combination, indicating beyond a shadow of a doubt, that it is the cells’ own DNA repair capacity that makes it sensitive to this drug doublet.

I write this blog because it is critically important for patients and doctors alike, to understand the chemistry of these agents and their interactions. While platinum resistance may indeed confer clinical resistance to platinum, carboplatin plus Taxol and related combinations, platinum resistant tumors may actually be more sensitive to intelligently administered drug combinations. Using our laboratory platform to measure the chemosensitivity and synergy for drug combinations we have identified numerous platinum resistant and platinum refractory patients who have had dramatic and durable response to re-challenge with platinum based therapies that employ these synergistic combinations. This is why we are extremely interested to study platinum resistant patients. After all, platinum resistance is in the eye of the beholder.

Ovarian Cancer Therapy

For many years I have been interested in the ovarian cancer literature. After all, it was our group that originally developed the platinum plus gemcitabine doublet and tested it through a Phase II trial conducted by the Gynecologic Oncology Group (GOG). The study’s results were reported in Gynecologic Oncology in 2006.

I then watched with interest as the GOG 182 five-arm clinical trial unfolded. This international study of over 4,000 patients randomly mixed and matched drug combinations but provided no evidence of superiority of one arm over another. The final conclusion of the manuscript that reported these results (Bookman, MA., Brady, MF, McGuire, WP, et al. J Clin Oncol 27: 1419-1425, 2009), stipulated that carboplatin plus taxol remained the “gold standard” for advanced epithelial ovarian carcinoma. A study of over 900 patients that compared carboplatin plus gemcitabine to carboplatin plus paclitaxel induction (Gordon A, Teneriello M, Lim, P, et al Clinical Ovarian Cancer, 2, 2:99-105, 2009) again provided comparable outcomes between arms yet carboplatin plus taxol remains the “gold standard.”

To this collection of published experiences, we now add the report by Sandro Pignata and co-investigators from the MITO-2 Phase III trial (Pignata, S., Scambia, G., Ferrandina, G., et al. J Clin Oncol 29: 3628-3635, 2011). This clinical trial conducted by Italian investigators compared carboplatin plus taxol to carboplatin plus pegylated liposomal doxorubicin (PLD) known in the U.S. as Doxil. Four hundred and ten patients were randomized to each arm of the trial. The results revealed numerical superiority for the carboplatin plus PLD arm in terms of median progression-free survival (19 months vs. 16.8 months) and numerical superiority for overall survival for the carboplatin plus PLD over the carboplatin plus taxol arm (61.6 vs. 53.2 months). However, these results did not achieve statistical significance. Therefore, the authors conclude that carboplatin plus taxol “remains the standard first-line chemotherapy for ovarian cancer.” While they do grant that, based on toxicity, carboplatin plus PLD could be considered as an alternative therapy.

With the GOG 182 study, the Gordon study (comparing carboplatin plus gemcitabine) and the most recent Pignata study comparing carboplatin plus PLD all establishing activity for several first-line regimens, why is it that the gynecologic oncologists continually return to carboplatin plus taxol as the “gold standard?”

Is there not ample evidence that several regimens provide similar results and survivals? Is there not evidence that the toxicities differ? Why can’t the gynecologic oncologists get off the dime? Why can’t they admit that several treatment regimens are appropriate and indicated for the malignancy? Why can’t they admit that some patients may, in fact, do better with one treatment over another?

And, finally, why can’t they admit that using laboratory analyses to determine a patient’s functional profile has the potential to select amongst these regimes to provide the best outcomes for the majority of patients?

Faster than the Speed of Light

Last week, scientists at CERN, the European particle physics laboratory located outside Geneva, Switzerland, conducted an experiment, the results of which now challenge one of the most fundamental principles of modern physics. I speak of Albert Einstein’s 1905 declaration that the speed of light is an absolute and that nothing in the universe could travel faster.

E = MC2, the principle under which nuclear energy and weapons have been developed, as well as all of the corollaries of the theory of relativity were called into question when a series of sub atomic particles, known as neutrinos traveled from Switzerland to Italy at a speed that was 1/60 of a billionth of a second faster than the speed of light. What has followed has been a flurry of interest by departments of physics all over the world. Confronted with this new finding, these investigators will diligently seek to reproduce or refute the findings.

This was not the first time that someone challenged the primacy of Einstein’s 1905 theory. Indeed, during the 1930s, for largely political and anti-Semitic reasons, the Nazi party attempted to disprove Einstein. Yet, all of the political meanderings, personal vendettas and intellectual jealousy could not unseat Einstein’s guiding principle. That is, until objective evidence in the form of the CERN experiments came to the fore.

Science — however lofty — and scientists — however highly regarded — dwell in the same realm as all the rest of us mere mortals. Their biases and preconceived notions often cloud their vision. Comfortable with a given paradigm, they hold unyieldingly to its principles until they are forced, however unwillingly, to relinquish their belief systems in favor of a new understanding. I write of this in the context of laboratory-based therapeutics – a field of scientific investigation that has provided firm evidence of predictive validity. These technologies have improved response, time to progression and survival for patients with leukemia, ovarian, breast and lung cancers, as well as melanoma and other advanced malignancies. Thousands of peer-reviewed published experiences have established the merit of human tumor primary cultures for the prediction of response. Investigations into the newest classes of targeted therapies are providing new insights into their use and combinatorial potential.

Yet,  while the physicists of the world will now rise to the challenge of data, the medical oncologists and their academic counterparts refuse to accept the unimpeachable evidence that supports  the validity of assay-directed therapy. Perhaps if our patients were treated at CERN in Geneva,  their good outcomes would receive the attention they so richly deserve.

Why Some Patients Refuse Chemotherapy – And Why Some of Them Shouldn’t

In the June 13, 2011, issue of Time magazine, Ruth Davis Konigsberg described cancer patients who refuse to take potentially lifesaving therapy. Her article, titled “The Refuseniks – why some cancer patients reject their doctor’s advice,” examined the rationale applied by patients who decline chemotherapy. Many of these patients are rational, articulate, intelligent and capable individuals. While there are those who by virtue of religious belief, underlying depression, or loss of loved ones, decline interventions, many of these patients make compelling arguments in favor of their decisions.

When we examine the basis of these patients’ therapeutic nihilism, much of it reflects the uncertainty of benefit combined with the certainty of toxicity. What these patients articulate is the fundamental dilemma confronted by cancer patients, what we might describe as their logical assessment of “return on investment.”

Everything in life is based on probabilities. Will your husband or wife be true? Will you have a boy or a girl? Will you live to see retirement? Will your nest egg be adequate? Cancer medicine is no different.

Will the treatment I’m being offered extend my life long enough to be worth the short- and medium-term toxicities that I will certainly suffer?

While I cannot address this question with regard to surgery or radiation, I feel uniquely qualified to do so in the context of chemotherapy. What, after all, is a chemosensitivity assay? When correctly performed, it is a laboratory test that dichotomizes groups of patients with average likelihoods of response (e.g. 20%, 30%, 40%, etc.) into those who are more or less likely to respond based on the results. On average, a patient found sensitive in vitro has a twofold improvement in response, while those found resistant have a demonstrably lower likelihood of benefit. We have now shown this to be true in breast, ovarian, and non-small cell lung cancers, as well as melanoma, childhood and adult leukemias, and other diseases.

To address the misgivings of the Refuseniks, we might ask the following question: Would you take a treatment that provided a 30 percent likelihood of benefit? How about a 40 percent? 50 percent? 60 percent? 70 percent? Or 80 percent? While many might decline the pleasure of chemotherapy at a 20-30 percent response rate, a much larger number would look favorably upon a 70 percent response rate. On the flipside, a patient offered a treatment with a 50 percent likelihood of benefit (on average), who by virtue of a lab study realizes that their true response rate is closer to 19 percent (based on resistance in vitro), might very logically (and defensibly) decline treatment. These real life examples reflect the established performance characteristics of our laboratory tests (Nagourney, RA. Ex vivo programmed cell death and the prediction of response to chemotherapy. Current Treatment Options in Oncology 2006, 7:103-110.).

Rather than bemoan the uncertainties of treatment outcome, shouldn’t we, as clinical oncologists, be addressing these patients’ very real misgivings with data and objective information? I, for one, believe so.