Faster than the Speed of Light

Last week, scientists at CERN, the European particle physics laboratory located outside Geneva, Switzerland, conducted an experiment, the results of which now challenge one of the most fundamental principles of modern physics. I speak of Albert Einstein’s 1905 declaration that the speed of light is an absolute and that nothing in the universe could travel faster.

E = MC2, the principle under which nuclear energy and weapons have been developed, as well as all of the corollaries of the theory of relativity were called into question when a series of sub atomic particles, known as neutrinos traveled from Switzerland to Italy at a speed that was 1/60 of a billionth of a second faster than the speed of light. What has followed has been a flurry of interest by departments of physics all over the world. Confronted with this new finding, these investigators will diligently seek to reproduce or refute the findings.

This was not the first time that someone challenged the primacy of Einstein’s 1905 theory. Indeed, during the 1930s, for largely political and anti-Semitic reasons, the Nazi party attempted to disprove Einstein. Yet, all of the political meanderings, personal vendettas and intellectual jealousy could not unseat Einstein’s guiding principle. That is, until objective evidence in the form of the CERN experiments came to the fore.

Science — however lofty — and scientists — however highly regarded — dwell in the same realm as all the rest of us mere mortals. Their biases and preconceived notions often cloud their vision. Comfortable with a given paradigm, they hold unyieldingly to its principles until they are forced, however unwillingly, to relinquish their belief systems in favor of a new understanding. I write of this in the context of laboratory-based therapeutics – a field of scientific investigation that has provided firm evidence of predictive validity. These technologies have improved response, time to progression and survival for patients with leukemia, ovarian, breast and lung cancers, as well as melanoma and other advanced malignancies. Thousands of peer-reviewed published experiences have established the merit of human tumor primary cultures for the prediction of response. Investigations into the newest classes of targeted therapies are providing new insights into their use and combinatorial potential.

Yet,  while the physicists of the world will now rise to the challenge of data, the medical oncologists and their academic counterparts refuse to accept the unimpeachable evidence that supports  the validity of assay-directed therapy. Perhaps if our patients were treated at CERN in Geneva,  their good outcomes would receive the attention they so richly deserve.

About Dr. Robert A. Nagourney
Dr. Nagourney received his undergraduate degree in chemistry from Boston University and his doctor of medicine at McGill University in Montreal, where he was a University Scholar. After a residency in internal medicine at the University of California, Irvine, he went on to complete fellowship training in medical oncology at Georgetown University, as well as in hematology at the Scripps Institute in La Jolla. During his fellowship at Georgetown University, Dr. Nagourney confronted aggressive malignancies for which the standard therapies remained mostly ineffective. No matter what he did, all of his patients died. While he found this “standard of care” to be unacceptable, it inspired him to return to the laboratory where he eventually developed “personalized cancer therapy.” In 1986, Dr. Nagourney, along with colleague Larry Weisenthal, MD, PhD, received a Phase I grant from a federally funded program and launched Oncotech, Inc. They began conducting experiments to prove that human tumors resistant to chemotherapeutics could be re-sensitized by pre-incubation with calcium channel blockers, glutathione depletors and protein kinase C inhibitors. The original research was a success. Oncotech grew with financial backing from investors who ultimately changed the direction of the company’s research. The changes proved untenable to Dr. Nagourney and in 1991, he left the company he co-founded. He then returned to the laboratory, and developed the Ex-vivo Analysis - Programmed Cell Death ® (EVA-PCD) test to identify the treatments that would induce programmed cell death, or “apoptosis.” He soon took a position as Director of Experimental Therapeutics at the Cancer Institute of Long Beach Memorial Medical Center. His primary research project during this time was chronic lymphocytic leukemia. He remained in this position until the basic research program funding was cut, at which time he founded Rational Therapeutics in 1995. It is here where the EVA-PCD test is used to identity the drug, combinations of drugs or targeted therapies that will kill a patient's tumor - thus providing patients with truly personalized cancer treatment plans. With the desire to change how cancer care is delivered, he became Medical Director of the Todd Cancer Institute at Long Beach Memorial in 2003. In 2008, he returned to Rational Therapeutics full time to rededicate his time and expertise to expand the research opportunities available through the laboratory. He is a frequently invited lecturer for numerous professional organizations and universities, and has served as a reviewer and on the editorial boards of several journals including Clinical Cancer Research, British Journal of Cancer, Gynecologic Oncology, Cancer Research and the Journal of Medicinal Food.

3 Responses to Faster than the Speed of Light

  1. Gary Brutsch says:

    This new scientific finding should be clasified under the heading scientific evolution.

  2. Nydia I. Martinez says:

    What would be of Steve Jobs if he had know of Dr. Nagourney? I don’t know and no one will at this point. But my point is, this approach has to be “known” by many more people and should be offered as an alternative to traditional treatment. Why isn’t it?

    • I regret that I did not know Steve Jobs, nor did we have the opportunity to work together . It is impossible to know whether we might have been able to offer any insights but we would have been very happy to try.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: