In Cancer Care, It Appears that More Is Less

With the interest in “value oncology” and cost containment, a report appeared in the December 2014 Journal of Clinical Oncology that analyzed the impact of the Medicare Prescription Drug Act of 2003 (MMA) on chemotherapy administration in an environment of diminishing reimbursement to physicians.

Prior to the passage of the MMA, oncologists were compensated at 95% of the average wholesale price of a drug. The government accounting office found that the larger medical oncology practices could form “buyers groups” and purchase drugs at lower prices allowing them to pocket the difference. A 2003 New York Times article decried the practice as a “Chemotherapy Concession” and Medicare responded. The MMA of 2003 changed the policy so that chemotherapy drugs were reimbursed at the national average sale price plus 6%. It was hoped that this would result in cost savings.

Practices were divided into Fee-For-Service and Integrated-Health-Networks, the latter largely HMOs and the Veterans’ Administration. It was expected that integrated networks would be less affected since their physicians are salaried and an 11% disparity between the two groups was noted for MMA agents. However, a number of interesting, unexpected and instructive trends emerged.

First, contrary to expectations, the overall use of chemotherapy actually increased following the passage of the MMA.

Second, the cost of cancer care continued to increase unabated following the passage of the MMA.

Finally, changes in drug use appeared to be disease-specific. Colorectal and small cell lung cancer patients saw a decline in the use of MMA affected drugs while non-small lung cancer showed an increase for both fee-for-service and integrated networks. With the overall use of MMA drugs in lung cancer increasing by 1.6 fold, the same drug use increase in the integrated (salaried) groups was 6.3 fold higher.

Among the findings the authors note “reimbursement after MMA passage appears to have had less impact on prescribing patterns in fee for service than the introduction of new drugs and clinical evidence.” This gives the lie to the idea that practicing oncologists are driven by self-gain, a popular narrative in the current political environment.

The authors did find that passage of MMA “resulted in consolidations and acquisitions of practices by hospitals, many of which were able to purchase chemotherapy drugs at discounted rates through the federal 340B* program. Although the full impact of these changes is not known, the shift of chemotherapy from community practices to hospital outpatient settings is associated with higher total costs.”

Community fee-for-service oncologists represent a qualified, yet under-appreciated resource for patients. While their academic brethren bask in the limelight, it is private practitioners who must make sense of the complex and overly dose-intensive treatment schedules handed down to them by ivory tower investigators. We now come to learn that while fee-for-service doctors have been forced to consolidate, join hospital systems, or retire, the cost of cancer care has actually climbed by 66% since the passage of MMA.

It would appear that this experiment has failed. Costs were not contained and drug use was not curtailed. What other bright ideas can we expect from policymakers who seem intent on bending medical care to their wishes at the expense of doctors and their patients?

 

*The 340 B program was originally created by the Federal government to allow charitable hospitals to save money on expensive drugs by allowing them to purchase them at deep discounts. Over time a growing number of “not-for-profit” hospitals demanded the same consideration. Subsequent analyses have found that the majority of the hospitals that now take advantage of 340B actually provide less charity care than the national average. Hospitals that charge full fee for drug administration can then pocket the difference.

Rationed or Rational: The Future of Cancer Medicine

Disturbing news from Britain’s Health Service on Monday, January 12, described the National Health Services’ decision to “delist” 25 of the nation’s 84 currently available chemotherapy drugs from their formulary. Citing the rising cost of cancer therapy Professor Peter Clark, chair of the Cancer Drug Fund said that the CDF, originally established in 2011, had already exceeded its annual budget. From ₤280 million in 2014 the costs for 2015 are projected to rise to ₤340 million. In defense of the policy Dr. Clark said the delisted drugs “did not offer sufficient clinical benefit.”

avastinAn examination of the delisted drug should raise concern for medical oncologists. Among those delisted are Bevacizumab (Avastin) for colorectal cancer, Eribulin (Haloven) and Lapatinib (Tykerb) for breast cancer and Pemetrexed (Alimta) for advanced lung cancer. Additionalhalaven deletions include Bendamustine (Treanda) for some non-Hodgkin’s lymphoma, Bortezomib (Velcade) for relapsed mantle cell lymphoma and Waldenström’s macroglobulinemia. Bortezomib will also be limitedvelcade_MP_thumb in some cases of myeloma, while Cetuximab will be unavailable as second or third line treatment in colorectal cancer. For American oncologists these agents have become standards of care.

Many physicians in England are outraged. Mark Flannagan, executive chief of the Beating Bowel Cancer Fund described this as “bad news for bowel cancer patients” suggesting that 65% of patients with advanced colorectal cancers will confront the risk of an earlier death. Despite these draconian measures physicians may still have the opportunity to request delisted drugs under what is described as “exceptional cases.”

The breadth and scope of the drug restrictions are surprising. After all, Pemetrexed is one of the most widely used treatments for advanced lung cancer, Bevacizumab has become an established part of colorectal cancer management and Eribulin is a favored salvage regimen in recurrent breast. The withdrawal of Bortezomib, an active agent in mantle cell, Waldenström’s and myeloma, will not be suffered lightly by patients in need.

Are the problems confronting the UK an early harbinger of the same for the American medical system?

With aging populations in western societies and increasingly sophisticated medical technologies, the cost of medical care, particularly cancer care may soon become unmanageable. UK’s centralized medical care delivery through the National Health Service, a single payer system, was designed to save money. Despite its high-minded intentions, the NHS appears to be failing. While spending more money each year the dissatisfaction with medical delivery only grows. A nearly 12% increase in health care per person expenditures in England between 2009 and 2013 (₤1712 to ₤1912) was met with an 18% increase in patient complaints.

Among the problems are progressive layers of middle management that add cost without providing care.  Physicians find it more difficult to do their jobs while people inexpert in the delivery of medical care have been given decision-making power. As the English population has come to look upon health care as a right, some overuse medical services, even ER’s, for non-serious conditions. Reformers have suggested the solution may lie in charging fees for appointments or requiring an annual membership fee. In today’s political milieu however, few elected officials are likely to relish policies that end “free health care” in England.

What might solve this dilemma for medical oncology? An obvious solution is to apply resources where they are most likely to benefit patients, e.g. personalized care. While this seemed a pipe dream 20 years ago when we first introduced the concept, a growing chorus of scientists now embraces the idea. With their focus almost exclusively on genomics this new cadre of clinical investigators describe a future where each patient gets exactly the right treatment.

We applaud this thinking and fully agree. However, we must be prepared to use all platforms to achieve this worthy goal. To fill the current void phenotypic analyses offer substantive benefits. By capturing cancer biology at a functional level, these studies identify true “driver mutations,” and have the capacity to examine synergy and sequence-dependence, both beyond the scope of genomic analyses.

As human tumor primary culture analyses (such as EVA-PCD) have already been shown to double objective response rates and improve one-year survival, it is time for government officials and policymakers to re-examine the benefits of drug selection technologies that are available today.

Will the future of cancer medicine in the UK and the US be rationed under the duress of rising costs, or rational, through the application of available technologies capable of making intelligent cost- and life-saving decisions? That remains to be seen.

Breakthroughs In Cancer?

Coco Chanel, the icon of 20th century fashion once said, “Only those with no memory insist on their originality.” I am reminded of this quote as I review recent discoveries in cancer, among them, the recognition that cancer represents a dysregulation of cellular metabolism.

The field of metabolomics (the systematic study of cellular energy production), explored by investigators over the last decade is little more than the rediscovery of enzymology (a branch of biochemistry that deals with the properties, activity, and significance of enzymes), biochemistry (the science dealing with the chemistry of living matter) and stoichiometry (the part of chemistry that studies amounts of substances that are involved in reactions), pioneered by investigators like Albert Lehninger, Hans Krebs, Otto Warburg, and Albert Szent-Gyorgyi. These innovators used crude tools to explore the basis of human metabolism as they crafted an understanding of bioenergetics (the study of the transformation of energy in living organisms) and oxidative phosphorylation (processes occurring in the cell’s mitochondrion that produce energy through the synthesis of ATP (energy carrier of the body).

More recently, scientists wedded to genomics have slowly come to recognize the limitations of their approach and have returned to the field of phenotypic (the observable physical or biochemical characteristics of an organism analysis.

While newcomers to the field claim to be the first to recognize the role of cellular biology in tumor biology, a cadre of dedicated investigators had already charted these waters decades earlier. Beginning with the earliest studies by Siminovitch, McCulloch and Till, subsequent investigations by Sydney Salmon and Anne Hamburger, developed the earliest iteration of cellular studies for the examination of cancer biology in primary culture.

Ovarian Cancer

Ovarian Cancer

The work of Black and Spear, published in the 1950s similarly explored the study of human cellular behavior for the study of cancer research. While Larry Weisenthal, Andrew Bosanquet and others established useful predictive methodologies to study cellular phenotype, their seminal contributions have gone largely unrecognized.

Today, start-up companies are examining cellular biology to predict cancer outcomes, each claiming to be the first to recognize the importance of cell death events in primary culture. The most recent and widely touted in the literature is the use of mouse avatars. Implanting biopsied explants of tissue from patients into nude mice, they grow the cancers to desired size and then inject the drugs of interest to show tumor shrinkage. To the discerning eye however, it obvious that this represents little more than an expensive, inefficient, and extremely slow way to achieve that, which can be done more easily, inexpensively, and quickly in a tissue culture environment.

When I read the promotional material of some of the new entrants to this field, I am reminded of another quote, that of Marie Antoinette, who said, “There is nothing new except what has been forgotten.”