A New Use for One of the Oldest “New” Drugs

With the profusion of new targeted agents entering the clinical arena, a report from the American Society of Hematology bears consideration.

The trial known as the SORAML trial enrolled 276 patients with newly diagnosed acute myelogenous leukemia. The patients were between the ages of 18 and 60. All patients received a standard chemotherapy regimen. The patients were then randomized to receive Sorafenib or placebo. Patients on the Sorafenib arm then remained on a maintenance therapy for twelve months.

While the achievement of complete remission was almost identical between the two arms at 59% and 60%, the event free survival demonstrably favored the Sorafenib group at 20.5 months versus 9.2 months. At three years of follow-up 40% of the Sorafenib group were well with only 22% of the placebo group still in remission. This corresponds to a three-year relapse free survival of 38% for placebo and 56% for Sorafenib (P=0.017).

The results are of interest on several levels.
1.    Sorafenib a multitargeted tyrosine kinase inhibitor was approved in December 2005 for the treatment of renal cell carcinoma. This makes Sorafenib one of the first targeted agents to achieve FDA approval.

2.     Sorafenib has many modes of action and it is not entirely clear which of its functions were responsible for the superior survival in this AML study.

3.    Sorafenib’s approval reflects a rather convoluted and interesting history. When first developed the drug was designed to target the oncogene B-Raf. As a result the drug was introduced into early clinical trials for the treatment of advanced melanoma, a disease known to be associated with B-Raf mutation. As the drug proved ineffective, it appeared unlikely to gain FDA approval. That is, until it showed cross reactivity with VEGF pathway associated with tumor cell vascularity. A successful trial published in the New England Journal of Medicine then led to the approval.

Now, nine years later this old new drug has gained new life. This time in acute myelogenous leukemia.

The term “dirty drug” refers to agents that target many kinases at the same time. Sorafenib is an example of a “dirty drug.” However it is Sorafenib’s “dirty drug” quality that led first to its approval and most likely now leads to its application in AML. This reflects the fact that Sorafenib may be inhibiting B-Raf signaling associated with the common mutation in Ras upstream of B-Raf or it may reflect Flt3 a secondary activity associated with Sorafenib.

Indeed B-Raf and Flt3 may not be upregulated in every patient, but could serve a function of permissive activity granting an additional survival signal to the AML cells as they go through induction therapy. These subtleties of drug effect may escape genomic analysis as the true “target” may not be mutated, upregulated or amplified. No doubt the investigators in this study will conduct gene sequencing to determine whether there is a driver mutation associated with the advantage reported in this clinical study. What will be intriguing is to determine whether that advantage is an abnormal gene functioning within these cancerous cells or possibly a normal gene functioning abnormally in these cancer cells. More to come.

Melanoma, the Immune System, and Targeted Therapies

For those of you who have been following the recent news coming from the American Society of Clinical Oncology (ASCO) held in Chicago, you have heard of the breakthroughs for the treatment of malignant melanoma.

Melanoma, the most lethal form of skin cancer, arises as a pigmented lesion (mole or large freckle), generally in sun-exposed areas. Though curable in its earliest stages, once these malignancies disseminate, they can be the most aggressive and hard to treat cancers known to oncologists. That is, until recently when two important discoveries were made.

The first discovery actually dates back many years. It turns out that melanoma is one of those cancers that occasionally, spontaneously, regresses and that a subset of patients respond to interferon (an immune protein). This suggested a role for the immune system.

The next piece of evidence came from work in the 1980s, conducted by Steven Rosenberg, MD, PhD, at the National Cancer Institute. Using a genetically engineered human protein (interleukin 2-IL2), these investigators reported responses in patients with metastatic melanoma. Again, an immune component to this dreaded disease.

Fast-forward two decades. Investigators unraveling the complexities of human immunity realized that the cancer cells weren’t being recognized and effectively controlled by lymphocytes. Something was dampening the immune response. With the discovery of ipilumumab, an antibody directed against CTL4, scientists could now turn off the “off” switch, thereby turning on the immune system.

Survival advantages have been substantial. This therapy is now available to patients in need.

The second discovery represents a triumph for “targeted” therapy. As the gene BRAF, was recognized to be mutated in the majority of melanoma patients, drugs were developed to turn off this important pathway. Unfortunately, the first generation BRAF inhibitor sorafenib, could not shut down what proved to be the most common variant of the BRAF mutation, known as V600E.

To the rescue came a compound now known as vemurafenib. By turning off the V600E signal, those patients with this specific mutation (about 60 percent) responded dramatically.

While both these discoveries are meritorious, the responses in most patients unfortunately have not been very durable, with relapses generally occurring months or the first year after starting therapy. Interestingly, secondary pathways, like N-RAS and C-RAF, may step to the fore and overtake the effect of the BRAF inhibition. This offers hope that third generation small molecules will address these resistant clones.

In our laboratory, we are currently examining small molecules that inhibit the RAS and other pathways to determine whether new strategies may overcome these resistance mechanisms in melanoma. As a proof of concept, these reports from ASCO establish that the era of targeted therapy in melanoma is here.