Cancer Research Becomes “Curiouser and Curiouser”

Following the Gina Kolata New York Times article on July 8, 2011, which described the failure of the Duke University gene profile program in lung cancer, a second New York Times article popped up on the radar screen.  “Cancer’s Secrets Come into Sharper Focus” by George Johnson, examined the growing complexity of cancer research.

This article explored the growing realization that human biology is not linear. Included were references to work that we have previously described in this blog, including the groundbreaking work of Pier Paolo Pandolfi. It also described the interaction between the human body and its microbial flora. We have long recognized that human health is, in part, associated with our interaction with microbes in our environment. The gastrointestinal tract has numerous species that are increasingly believed to contribute to our health. The growing field of probiotics, wherein people consume “healthy organisms,” has gone from quackery to community standard in less than a decade.

What is interesting over the past years is the growing recognition that many cancers are related to infections. Viral infections are known to be oncogenic, with the Epstein-Barr virus, HPV and other viruses now known to be causative of lymphomas, cervical, head and neck, and other cancers. The association between helicobacter and ulcers, gastric lymphoma, and esophageal malignancies are of interest both epidemiologically and therapeutically.

What is most interesting of all is the growing recognition that the cancer cell is but a small component of the cancer.

Here at Rational Therapeutics we recognized the interplay between cells, stroma, vascular elements, cytokines, macrophages, lymphocytes and other environmental factors. This lead to our focus on the human tumor primary culture microspheroid, which contains all of these elements. In our earlier work, we endeavored to isolate tumor cells from their benign constituents so as to study “pure” tumor cells. As time went on, however, we found that these disaggregated cells were artificially sensitized to the effects of chemotherapy and provided false positive results in vitro.

Early work by Beverly Teicher and Robert Kerbel that examined cells alone and in 3-dimensional structures, lead to the realization that cancer cells inhabit a microenvironment. Our lab now studies cancer response to drugs within this microenvironment, enabling us to provide clinically relevant predictions to our patients.

It is our capacity to study human tumor microenvironments that distinguishes us from other platforms in the field. And, it is this capacity that enables us to conduct discovery work on the most sophisticated classes of compounds that influence cell signaling at the level of notch, hedgehog and WNT, among other (Gonsalves, F, et al. (2011). An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of WNT/wingless signaling pathway. PNAS vol. 108, no. 15, pp. 5954-5963).  With this clinically validated platform we are now positioned to streamline drug development and advance experimental therapeutics.