Is There a Role for Maintenance Therapy in Cancer Treatment?

There is a long tradition of maintenance therapy in pediatric oncology. Children with acute lymphoblastic leukemia uniformly receive three stages of therapy: induction, consolidation, and finally maintenance. The maintenance stage consists of weekly, or even daily therapies.

The historical experiences of relapse in this population lead investigators to consistently expose these patients to drugs for a period of years. Despite the apparent success of this approach in childhood cancers, long-term maintenance therapy did not gain popularity in adult oncology. Why?

There are probably several reasons. One reason is that childhood leukemia is among the most chemo-responsive diseases in medicine. As such, there are many active drugs available for treatment and many non-cross-resistant maintenance schedules that can be employed.

A second reason is the relative tolerability of drugs like oral thioguanine or mercaptopurine that are used in chronic maintenance therapy. By contrast adult tumors rarely achieve complete remissions. The number of active drugs has historically been very limited and the tolerance of long-term treatments characteristically poor.

Despite this, there is an appealing rational for maintenance therapy. Once we recognized and incorporated the tenents of apoptosis and programmed cell death into cancer management, we were forced to reconsider many of the principles of older treatment protocols.

Conceptually, maintenance allows for a cytotoxic exposure when the cell enters a “chemosensitive” period in its life cycle.  Cancer cells that are “out surviving” their normal counterparts often do so in a quiescent stage (G0 Gx). In order to capture these cells, drugs must be present in the body when these cells awaken from their dormancy. As we have now achieved increasingly durable remissions in diseases like breast cancer, small cell lung and ovarian, we are confronting patients in long-term complete remission. When you add to this newfound population the availability of comparably mild agents, like the low dose Gemcitabine/Cisplatin doublet, we now have at our disposal active drugs that can be safely continued for long periods of time.

Using laboratory selection to identify first line (induction), second line (consolidation) and finally third line (maintenance) schedules, we can now offer our patients well-tolerated combinations that offer the hope of more durable remissions.

The GOG 178, in which continued taxol dosing provided more durable remission in ovarian cancer, provided the first inklings of this. Unfortunately, taxol is toxic. And the more durable remissions came at an increasingly high price: neuropathy, myelosuppression, alopecia, fatigue and malaise, which greatly limited the utility of this approach. Yet it does not limit its theoretical attractiveness as we continue to develop targeted agents with more selective activity and modified toxicity profiles. We anticipate maintenance therapies will become more widespread.

Based upon our experiences to date, we are successfully using this approach with our patients who achieve good clinical remissions.

Outliving Cancer

You can find more information about our use of maintenance therapy, in Chapter 14 of the book Outliving Cancer.

This blog was originally posted in August 2011.

Cancer Treatment – A Husband’s View

Gary Brutsch

Guest blogger – Gary Brutsch

Dr. Nagourney is currently attending an international conference where he is an invited speaker. During his absence we will have guest bloggers sharing their views on chemosensitivity testing and the EVA-PCD® assay. Our first guest is Gary Brustch.

Five years ago, my wife of otherwise good health was diagnosed with Stage IV uterine cancer. Following a surgical “solution,” we commenced our search for the next best alternative to just waiting for the disease to take its course.

We settled on a protocol supervised by a major cancer treatment center in Texas. For a total of six months, my wife, Tina, was treated with a combination of chemotherapies. During this treatment we continued to look for medical care that was more scientific-based.

At the conclusion of their protocol, we were notified that the course of treatment had not been successful. At this time Tina’s cancer marker numbers were approaching 800. Two days after this notification we decided that our final option was to contact Robert Nagourney, MD, at Rational Therapeutics in Long Beach, CA.

Our decision was based on the belief that his tumor sensitivity based chemo architecture was probably a more effective method to treat her tumor growth.

After obtaining a tumor sample from Tina and subjecting it to a laboratory process (assay testing), Dr. Nagourney prescribed a specific chemotherapy cocktail for her treatment. After one month of supervised treatment, Tina’s cancer marker number was under one hundred.

We are now into our fourth year of maintenance supervised by Dr. Nagourney. Our united opinion seems to say that, as health challenged individuals we must demand that caregivers treat our health challenges on a focused, individual basis.

We cannot accept that one category of chemotherapy is good for all.

Is There a Role for Maintenance Therapies in Medical Oncology?

There is a long tradition of maintenance therapy in pediatric oncology. Children with acute lymphoblastic leukemia uniformly receive three stages of therapy: induction, consolidation, and finally maintenance. The maintenance stage consists of weekly, or even daily therapies.

The historical experiences of relapse in this population lead investigators to consistently expose these patients to drugs for a period of years. Despite the apparent success of this approach in childhood cancers, long-term maintenance therapy did not gain popularity in adult oncology. Why?

There are probably several reasons. One reason is that childhood leukemia is among the most chemo-responsive diseases in medicine. As such, there are many active drugs available for treatment and many non-cross-resistant maintenance schedules that can be employed.

A second reason is the relative tolerability of drugs like oral thioguanine or mercaptopurine that are used in chronic maintenance therapy. By contrast adult tumors rarely achieve complete remissions. The number of active drugs has historically been very limited and the tolerance of long-term treatments characteristically poor.

Despite this, there is an appealing rational for maintenance therapy. Once we recognized and incorporated the tenents of apoptosis and programmed cell death into cancer management, we were forced to reconsider many of the principles of older treatment protocols.

Conceptually, maintenance allows for a cytotoxic exposure when the cell enters a “chemosensitive” period in its life cycle.  Cancer cells that are “out surviving” their normal counterparts often do so in a quiescent stage (G0 Gx). In order to capture these cells, drugs must be present in the body when these cells awaken from their dormancy. As we have now achieved increasingly durable remissions in diseases like breast cancer, small cell lung and ovarian, we are confronting patients in long-term complete remission. When you add to this newfound population the availability of comparably mild agents, like the low dose Gemcitabine/Cisplatin doublet, we now have at our disposal active drugs that can be safely continued for long periods of time.

Using laboratory selection to identify first line (induction), second line (consolidation) and finally third line (maintenance) schedules, we can now offer our patients well-tolerated combinations that offer the hope of more durable remissions.

The GOG 178, in which continued taxol dosing provided more durable remission in ovarian cancer, provided the first inklings of this. Unfortunately, taxol is toxic. And the more durable remissions came at an increasingly high price: neuropathy, myelosuppression, alopecia, fatigue and malaise, which greatly limited the utility of this approach. Yet it does not limit its theoretical attractiveness as we continue to develop targeted agents with more selective activity and modified toxicity profiles. We anticipate maintenance therapies will become more widespread.

Based upon our experiences to date, we are successfully using this approach with our patients who achieve good clinical remissions.