The High Cost of Cancer Care

Scott GottleibAn article by Scott Gottlieb, MD, in Forbes (Medicare Nixes Coverage for New Cancer Tests), described Medicare reimbursement for new molecular diagnostics. As many readers are aware, there have been a growing number of diagnostic tests developed and marketed over recent years designed to identify and monitor the progress of cancer. Many of these tests are multiplexed gene or protein panels that identify prognostic groups using nomograms developed from prospective or retrospective analyses. The 21-gene Oncotype DX and related Mammoprint, are among the most widely used. Related tests for lung, colon, and other cancers are in development.

With the explosion of assays designed to personalize cancer care, comes the expense associated with conducting these analyses. Medicare, as the largest provider of medical insurance in the United States, is at the leading edge of cost containment. Not surprisingly, HHS has a jaundiced view of adding tests without clear cost benefit.

The issue is far broader than cost analysis. It goes to the very heart of what we describe as personalized medicine. Every patient wants the right treatment for their disease. Every laboratory company wants to sell their services. Where the supply and demand curve meet however, is no longer set by market forces. In this instance, third party reimbursers set the fee and the companies then need to determine whether they can provide their service at that cost.

The problem, as with all economic analysis, is meeting patient’s unlimited wants with limited resources. Two solutions can be envisaged. On the one hand, medical care progressively moves to a scenario of haves and have nots wherein only wealthier individuals can afford to obtain those drugs and interventions that are beyond the price range of most. On the other hand, care is rationed and only those treatments and interventions that rise to the highest level of evidence are made available.

While the subject of this article was sophisticated diagnostic tests, it will only be a matter of time before these same econometric analyses begin to limit the availability of costly drugs like highly expensive targeted agents. In a recent editorial published in blood, leading leukemia experts pointed out that 11 of the 12 recently approved drugs each cost $10,000 or more per month.

As we examine the rather grim prospect of unaffordable or rationed care, a glimmer of hope can be seen. Using expensive and relatively insensitive molecular diagnostic tests to select expensive targeted agents could be replaced by less expensive testing platforms. The dramatic, yet brief responses observed for many targeted agents reflect the shortcoming of linCray Computer v2ear thinking applied to the manifestly non-linear human biology, characterized by cross talk, redundancies and unrecognized hurdles. To address these complexities phenotypic analysis (the phenotype being the end product of genomic, transcriptomic and proteomic events) provide global assessments of tumor response to drugs, combinations and signal transduction inhibitors. These more discriminating results identify cellular response at the level of biology, not just informatics. While it is theoretically possible that high-throughput genomic analyses using neural networks and high throughput computer analyses may ultimately provide similar information, it is unlikely that most patients will have ready access to a Cray computer to decipher their results.

We need to stop working hard and start working smart. The answers to the many questions raised by the Forbes article regarding resource allocation in cancer treatment may already be at hand.