Systems Biology Comes of Age: Metastatic Lung Cancer in the Crosshairs

Cancer therapists have long sought mechanisms to match patients to available therapies. Current fashion revolves around DNA mutations, gene copy and rearrangements to select drugs. While every cancer patient may be as unique as their fingerprints, all of the fingerprints on file with the federal AFIS (automated fingerprint identification system) database don’t add up to a hill of genes (pun intended), if you can’t connect them to the criminal.

To continue the analogy, it doesn’t matter why the individual chose a life of crime, his upbringing, childhood traumas or personal tragedies. What matters is that you capture him in the flesh and incarcerate him (or her, to be politically correct).

The term we apply to the study of cancer, as a biological phenomenon is “systems biology.” This discipline strikes fear into the heart of molecular biologists, for it complicates their tidy algorithms and undermines the artificial linearity of their cancer pathways. We frequently allude to the catchphrase, genotype ≠ phenotype, yet it is the cancer phenotype that we must confront if we are to cure this disease.

Using a systems biology approach, we applied the ex-vivo analysis of programmed cell death (EVA-PCD®) to the study of previously untreated patients with non-small cell lung cancer. Tissue aggregates isolated from their surgical specimens were studied in their native state against drugs and signal transduction inhibitors. This methodology captures all of the interacting “systems,” as they respond to cytotoxic agents and growth factor withdrawal. The trial was powered to achieve a two-fold improvement in response.

At interim analysis, we had more than accomplished our goal. The results speak for themselves.

First: a two-fold improvement in clinical response – from the national average of 30 percent we achieved 64.5 percent (p – 0.00015).

Second: The median time to progression was improved from 6.4 to 8.5 months.

Third: And most importantly the median overall survival was improved from an average of 10 – 12 months to 21.3 months, a near doubling.

These results, from a prospective clinical trial in which previously untreated lung cancer patients were provided assay directed therapy, reflects the first real time application of systems biology to chemotherapeutics. The closest comparison for improved clinical outcome with chemotherapeutic drugs chosen from among all active agents by a molecular platform in a prospective clinical trial is . . .

Oh, that’s right there isn’t any.

About Dr. Robert A. Nagourney
Dr. Nagourney received his undergraduate degree in chemistry from Boston University and his doctor of medicine at McGill University in Montreal, where he was a University Scholar. After a residency in internal medicine at the University of California, Irvine, he went on to complete fellowship training in medical oncology at Georgetown University, as well as in hematology at the Scripps Institute in La Jolla. During his fellowship at Georgetown University, Dr. Nagourney confronted aggressive malignancies for which the standard therapies remained mostly ineffective. No matter what he did, all of his patients died. While he found this “standard of care” to be unacceptable, it inspired him to return to the laboratory where he eventually developed “personalized cancer therapy.” In 1986, Dr. Nagourney, along with colleague Larry Weisenthal, MD, PhD, received a Phase I grant from a federally funded program and launched Oncotech, Inc. They began conducting experiments to prove that human tumors resistant to chemotherapeutics could be re-sensitized by pre-incubation with calcium channel blockers, glutathione depletors and protein kinase C inhibitors. The original research was a success. Oncotech grew with financial backing from investors who ultimately changed the direction of the company’s research. The changes proved untenable to Dr. Nagourney and in 1991, he left the company he co-founded. He then returned to the laboratory, and developed the Ex-vivo Analysis - Programmed Cell Death ® (EVA-PCD) test to identify the treatments that would induce programmed cell death, or “apoptosis.” He soon took a position as Director of Experimental Therapeutics at the Cancer Institute of Long Beach Memorial Medical Center. His primary research project during this time was chronic lymphocytic leukemia. He remained in this position until the basic research program funding was cut, at which time he founded Rational Therapeutics in 1995. It is here where the EVA-PCD test is used to identity the drug, combinations of drugs or targeted therapies that will kill a patient's tumor - thus providing patients with truly personalized cancer treatment plans. With the desire to change how cancer care is delivered, he became Medical Director of the Todd Cancer Institute at Long Beach Memorial in 2003. In 2008, he returned to Rational Therapeutics full time to rededicate his time and expertise to expand the research opportunities available through the laboratory. He is a frequently invited lecturer for numerous professional organizations and universities, and has served as a reviewer and on the editorial boards of several journals including Clinical Cancer Research, British Journal of Cancer, Gynecologic Oncology, Cancer Research and the Journal of Medicinal Food.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: